
Theor Chim Acta (1991) 79:199-213 Theoretica
Chimica Acta
© Springer-Verlag 1991

Benchmark studies of the BCRLM reactive scattering code:
Implications for accurate quantum calculations

Edward F. Hayes 1, Zareh Darakjian 1, and Robert B. Walker 2
1 Department of Chemistry, Rice University, Houston, TX 77251, USA

2 Theoretical Division (T-12, MS B268), Los Alamos National Laboratory, Los Alamos, NM 87545,
USA

Received September 1, 1990/Accepted November 13, 1990

Summary. The Bending Corrected Rotating Linear Model (BCRLM), developed
by Hayes and Walker, is a simple approximation to the true multidimensional
scattering problem for reactions of the type: A + BC-->AB + C. While the
BCRLM method is simpler than methods designed to obtain accurate three-
dimensional quantum scattering results, this turns out to be a major advantage
in terms of our benchmarking studies. The computer code used to obtain
BCRLM scattering results is written for the most part in standard FORTRAN
and has been ported to several scalar, vector, and parallel architecture computers
including the IBM 3090-600J, the Cray XMP and YMP, the Ardent Titan, IBM
RISC System/6000, Convex C-1 and the MIPS 2000. Benchmark results will be
reported for each of these machines with an emphasis on comparing the scalar,
vector, and parallel performance for the standard code with minimum modifica-
tions. Detailed analysis of the mapping of the BCRLM approach onto both
shared and distributed memory parallel architecture machines indicates the
importance of introducing several key changes in the basic strategy and al-
gorithms used to calculate scattering results. This analysis of the BCRLM
approach provides some insights into optimal strategies for mapping three-
dimensional quantum scattering methods, such as the Parker-Pack method,
onto shared or distributed memory parallel computers.

Key words: Chemical reactions - Quantum dynamics - Parallel computing

1. Introduction

In the last several years we have witnessed significant progress in the develop-
ment of new methods for obtaining accurate state-to-state reaction cross
sections for three atom systems [1-11]. While this progress has enabled the study
of several real chemical reactions of interest, these computational studies re-
quired significant computational resources. As a result, there remains a high level
of interest in developing more powerful computational approaches to obtaining
quantum scattering information. The most important component in this search
for more effective computational methods will continue to be the discovery of
better scattering methods and algorithms. However, the rendering of these

200 E . F . Hayes et al.

methods into efficient computer codes will require special attention, if we are
to benefit from the enhanced capability of future generations of computer
hardware.

The purpose of this paper is to provide a progress report on our benchmark
studies of the BCRLM reactive scattering code for several scalar, vector, and
parallel architecture machines, and to discuss the implications of these studies for
mapping three-dimensional quantum scattering methods, such as the Parker-
Pack method (1) onto shared or distributed memory parallel computers.

The Bending Corrected Rotating Linear Model (BCRLM), developed by
Hayes and Walker [12], is a simple approximation to the true multidimensional
scattering problem for reactions of the type: A + BC ~ AB + C. The BCRLM
method is simpler than methods designed to obtain accurate three dimensional
quantum scattering results. Yet the BCRLM method includes a number of the
computational challenges presented by these accurate methods [1-11]. The basic
approach we have adapted is to gain as much insight as possible from a
thorough analysis and benchmarking of the BCRLM code and to use this
experience to guide more effective implementations of three-dimensional meth-
ods such as the Parker-Pack method. Since the computation times for a series
of BCRLM calculations are modest (i.e., minutes on a Cray YMP), we have
been able to execute numerous tests on a number of machines including the IBM
3090-600J, Cray XMP and YMP, Ardent Titan, IBM RISC System/6000,
Convex C-l, and MIPS 2000. We have found that having a series of test
problems that can be executed without requiring a significant allocation of
computer resources is a real advantage at this stage in our work since it enhances
our ability to test various compilers, to evaluate the relative scalar, vector, and
parallel performance of a machine and to obtain detailed performance statistics.

2. BCRLM method

2.1. Coupled equations

The coupled-channel equations for the BCRLM method have been developed
using both natural collision coordinates and hyperspherical coordinates [12]. In
this study we have used the code based on natural collision coordinates because
it is a more mature code, but the performance of either code is expected to be
about the same for the test calculations reported in this paper. Since the details
of the derivation of these equations have been reported elsewhere, we report only
the final results from Ref. [12b].

In the natural collison coordinates, u and v, the basic equations in matrix
form are:

d 2 N
J D.kgkm(U) (1) ffffu2 gnm(U) = ~ J J

k = O

where the coupling matrix elements OhJm for each sector, (i), are:

= V(u'; v) - V°(v; i) + - - (J (J + l) + l) G~)) 2#--rim 4a2 2#02

+ [½(e~ + ~m) -- El (G~ ;) It/21G~,)) (2)

Benchmark studies of the BCRLM reactive scattering code 201

Here u is the collision coordinate, v is a vibrational coordinate perpendicular to
u, and J is the total angular momentum. The potential term V°(v; i) is the
potential at the center of sector (i) and V(ui; v) is the full potential in sector (i)
including the bending correction terms. We have suppressed the labels for J and
the bending quantum numbers, 2. The functions G~ ° are obtained by solving the
reference vibrational Hamiltonian defined at the center of each sector:

~ v 2 + V°(v;i) - e i G(~ i) = 0 (3)

The energy and angular momentum dependence of matrix elements defined
in Eq. (2) can be written as follows:

D~O(E) - (o -- D,m(Eref, J = 0) + (Ere f - E)A~n 0 + J(J + 1)B~/) m (4)

where the energy and angular momentum independent matrices, A(~ and B(~
are given by:

h 2
A ~ = ~ (G(ff)ltlZlG~)) (5)

and
h 2

B(~)~ = ~ (G~i)lq2 0 - 2[G~)) (6)

To apply the appropriate boundary conditions for reactive scattering we also
need the coupled equations in Jacobi coordinates, R and r:

d 2 N
dR2 fn~(R) = Z C.k Am(R) (7)

k=0

where the coupling matrix elements C,,, are:
h 2 h 2
2~ Cnm = ('~n -- E)(~nm -~- (F n] V (R , r) - V°(r) + ~ (J (J + 1) + 1)IF m) (8)

Here R is the distance from the separated atom to the center of mass of the
associated diatomic molecule and r is the internuclear separation of the diatomic
molecule. The potential term V(R, r) is the full potential in the asymptotic
a tom-dia tom region and V°(r) is the asymptotic diatomic potential. The func-
tions F, are obtained by solving the reference vibrational Hamiltonian:

~ + V°(r) - e, F, = 0 (9)

The potential, V°(r), will in general depend on the particular arrangement
channel (i.e., reactants or products) but we have suppressed the channel index in
Eq. (9).

2.2. Vibrational basis representations

Equations (3) and (9) are solved by expanding the eigenfunctions in a set of
harmonic oscillator functions, ~bn(i), that have been selected for each sector.
While the matrix elements in Eqs. (2) and (8) may be solved efficiently in this
representation, it is convenient to transform to the representation that diagonal-
izes these equations, since this permits one to contract the basis set thus reducing

202 E.F. Hayes et al.

the order of the matrix to be propagated and, importantly, replacing a symmetric
matrix with a vector containing the eigenvalues.

At this point we can define Stage 1 of the BCRLM code. It consists of the
following steps:

- - Generate the Primitive Basis Set, ¢(i).
- - Evaluate D(i)(Eref), A (i) and B (0.
- - Diagonalize D(0(Eref) and transform A (0 and B (° to the diagonal representa-
tion.

Each of these steps must be performed for all of the sectors in the natural
collision coordinate representation and for the two asymptotic Jacobi arrange-
ments corresponding to reactants and products. Since each of these operations
can be carried out independently of all the others, this Stage 1 operation is
ideally suited for parallel computation.

2.3. Matching

As the wavefunction is propagated from one sector to the next with the
advancing natural collision coordinate, one must make certain that the wave-
function and its derivative are continuous across the sector boundary. The key to
meeting this requirement is the sector- to-sector overlap matrix, [a(i, i + 1)],~,
which is given by:

[tr(i, i + 1)]nm = (Gn(v ; i)]G,,,(v; i + 1)) (10)

With this overlap matrix we can easily enforce the sector matching by
requiring that

gR(i -- 1) = a(i, i + 1)gL(i) (11)

and

d g g (i -- 1) = tr(i, i + l)-~ugL(i) (12)
d

where gR(i - - 1) is the value of the matrix of solutions to Eq. (l) at the right side
of sector (i - 1), and gL(i) is the value of the matrix at the left hand side of
sector (i).

In matching to the Jacobi coordinate representation for the reactant and
product channels the matching conditions are a bit more involved. At these
matching boundaries we need the following two matrices:

S(2~ = (Gn(r; N)1~ -~/2[Fm(r; N + 1)) (13)

and
S(~2,)~ = (Gn(r; N)[tl '/2lFm(r; N + 1)) (14)

The asymptotic sector-to-sector continuity is preserved as follows:

gR(N) = S (° fL (N + 1) (15)

and
d N d ~ g R () = S (2 ~ fL(N + 1) (16)

where N is the last of the natural collision coordinate sectors.

Benchmark studies of the BCRLM reactive scattering code 203

Now we can define the Stage 2 in the BCRLM code in terms of the following
steps:

- - Determine the sector-to-sector overlap matrices.
- - Transform the overlap matrices to the local eigenfunction representation.

Both of these steps must be carried out for each of the sector intersections,
N, using Eqs. (13) and (14) for the final asymptotic entrance and exit channel
matching and Eq. (10) for other sector-to-sector boundaries. There are three
points that should be noted here. First of all each of these operations can be
carried out independently of the others. Thus Stage 2 is also ideally suited for
parallel computation. Moreover, if a distributed memory machine is to be used
for both Stage 1 and Stage 2, the interprocessor communication between stages
would be relatively low since the data required by any Stage 2 processor are
generated by only two Stage 1 processors, and, importantly, in most instances
these Processors can be arranged to be nearest neighbors.

3. Solving the coupled equations

3.1. R-matrix method

The method selected to solve the coupled-channel equations is the R-matrix
propagation method of Light and Walker [13]. The particular notation used here
follows from Ref. [12b].

As noted in the previous section the coupling matrices D(i), Eq. (4) are
calculated at the center of each sector and are assumed to be constant within the
sector. Since the D(i) are real symmetric matrices, they may be diagonalized in
each sector by a real orthogonal matrix U(i):

Ur(i)D(i)U(i) = 22(0 (17)

where ur(i) is the transpose of U(i). In each sector the propagation functions
fnm(i) must be transformed to this locally diagonal representation giving the new
propagation functions:

] (R; i) = U(i)f(R; i) (18)

The global R matrix between the initial sector, 0, and sector i is:

I f (R+ ; i) LR3(i) Ra(i)_] L f'(R+; i)

The sector R-matrix relating the values of the locally uncoupled functions to the
derivatives within sector j is:

R f ; j) J Lr3(J) ra(j)JL f(R7 ;J) [

where for open channels (,~2~ 0) we have:

[rl (i)]nm = [r4(i) lnm = (~nm[- - [2 n (O 1 - 1 cot AR,

[r2(i)],,, = It3 (i)],m = a,m [-- 12, (i) 1-' CSC AR, [2n(i)I]

(20)

(21)

204 E.F. Hayes et al.

For closed channels (22/> 0) the sector R-mat r ix is:

[rl (i)]nm = [r4(i)]n,, = 6,m[12,(i)1-1 coth ARi 12,(01]

[rz(i)],m = [r3(i)],m = 6,m[12,(i)1-1 csch ARi 12,(0 I] (22)

In Eqs. (19) and (20) AR~ is the width of sector i.
To propagate from sector (i) to sector (i + 1) we need to transform the

sector- to-sector overlap matrix, [o-(i, i + 1)],~, to the locally uncoupled repre-
sentation of sector (i + 1):

T(i, i + 1) = UT(i)~r(i, i ÷ 1)U(i ÷ 1) (23)

The working R-matrix recursion relations are [12b] as follows:

Rl(i + 1) = R1 (i) - R2(i)T(i, i + 1)Z(i + 1)TT(i, i + 1)R3(i) (24)

R2(i ÷ 1) = R~(i + 1) = R2(i)T(i, i ÷ 1)Z(i ÷ 1)r2(i ÷ 1) (25)

R4(i + 1) = v4(i + 1) - r3(i + 1)Z(i + 1)r2(i + 1) (26)

Z(i + 1) = [rl(i + 1) + TT(i, i + 1)R4(i)T(i, i + 1)] -1 (27)

In the BCRLM code, we propagate all four blocks of the R-mat r ix outward
first towards the entrance channel and then towards the exit channel. The two R
matrices are then combined and the scattering boundary conditions are enforced.
The propagation of the coupled equations defines Stage 3 of the calculations. It
is relatively straightforward to see that given the setup information from Stage
1 and Stage 2 all of the energy calculations involve the same steps for each
sector, namely:

- - Gather needed matrices from earlier stages.
- - Generation of the coupling matrix elements D(i).
- - Diagonalization of D(i).
- - Transformation of the matching matrix, a(i, i + 1).
- - R-mat r ix propagation.
- - T e m p o r a r y Storage for the Asymptotic R-mat r ix elements with E and J
labels.

Thus as we look at the feasibility of using various parallel architecture
machines to perform numerous energy calculations there are a number of critical
factors that must be assessed. In a shared memory environment, one can achieve
high levels of parallelization by just assigning different energy and total angular
momentum values to different processors, and, importantly the temporary
storage for large numbers of matrices is straightforward. However, in a distri-
buted memory environment it may be more efficient to assign one or more sectors
to a particular processor and run the various energy ard angular momentum
calculations through the processors in a pipeline mode. This approach cuts down
on the amount of interprocessor communication needed to gather the necessary
matrices from the earlier stages, and, if the number of calculations needed is
large relative to the number of processors, the percentage of time that there will
be idle processors will be acceptable. Moreover, since the matrix elements that
need to be moved to temporary storage all come from a single processor at the
end of the pipeline, it is straightforward to pass the asymptotic R-mat r ix
elements from that processor to external storage. In the near future we plan to
test these assertions concerning operations in a distributed memory environment
on the 32 node INTEL iPSC/860 machine at Rice University.

Benchmark studies of the BCRLM reactive scattering code 205

3.2. Boundary conditions

For large values of R the coupled-channel equations (Eq. (8)) are decoupled
and we have (ignoring an extra 1/~ 2 term):

27D.m = e. - E + 2 - ~ (J (J + 1)) ann a (28)

AS a result the scattering wavefunctions, f..~(R; J) have the asymptotic form:

f~m(R; J) ~ - ik.R[hSZ)(k.R)a.m + h51)(k.R)(km/k.) '/2SSm] (29)

h k . = 2/~(E - e.), S.Sm is an element of the where k. is the channel wavenumber, 2 2
S-matr ix , and the functions h~ > are spherical Hankel functions of the first and
second kind. To obtain the S-mat r ix from the final R matrix we need Eq. (29)
and its derivative in the form:

f (R ; J) = IN(R; J) - OT(R; J)k - l t2Sak 112 (30)

f ' (R; J) = IN'(R; J) - 0 T'(R; J)k -1/2SSk a/2 (31)

where the f (R ; J) and f ' (R; J) matrices are determined by propagation into the
entrance and exit channel asymptotic regions. The IN(R; J) and OT(R; J) are
diagonal matrices of the spherical Hankel functions:

[Or(R; J)].~ = ik.Rh~)(knR) (32)

and

[IN(R; J)].,. = [OT(R; J)]$nm (33)

Letting R~(J) be the final calculated R-mat r ix for a particular value of the total
angular momentum, J, following Ref. [12b] we may write down the expression
for the S matrix in terms of R~(J):

S] = kl/Z[OT(J) - R~(J)OT'(J)][OT(J) - R~(J)OT'(J)]*k -1/2 (34)

The integral cross section may be calculated from the S-matr ix elements as
follows:

a.,.(E) = rck• 2 ~ (2J + 1)16.,. - SnS~ [2 (35)
J = O

In the last stage in the BCRLM code, Stage 4, we need to carry out the
following operations for each energy:

- - Gather the R ~(J) matrices for each energy.
- - Determine Hankel functions and derivatives.
- - Generate S s matrices.
- - Calculate the integral cross section.
- - Output of the final results.

For a typical scattering study we are interested in determining the integral
cross section for numerous energy and angular momentum values. Here again
one can achieve high levels of parallelization by assigning different energy and
angular momentum values to different processors. The number of operations
needed to gather the necessary matrices, R ~(J), will depend both on the strategy
selected for S t a g e 3 and whether memory is shared or distributed. For a shared
memory environment this step is relatively simple - at most requiring a simple

206 E .F . Hayes et al.

sort if all the matrices (J and E) are not available at once in core. However, in
a distributed memory environment the gathering of the needed matrices and the
communication to the appropriate processor is more involved, but it is still a
relatively simple sorting process.

4. Results and discussion

4.1. Computer systems used

To date we have obtained benchmark results using seven different computing
systems. A summary of the characteristics of these systems is presented in Table
1. For each system studied we have generated timings on a standard problem,
the reaction F + H2--+ H + HF. The Muckerman 5 potential energy surface [14]
is used to represent the FH2 interaction potential and the number of coupled
channels is systematically varied from 5 to 30. For the comparison of scalar,
vector, the parallel performance we have taken a relatively simple test case that
consists of four energy calculations (i.e., E = 1.75, 1.65, 1.66, and 1.67 eV) for
J = 0 .

The IBM 3090 system used here is operated by the Cornell National
Supercomputer Facility, CNSF. The Cray XMP and YMP machines are located
at Los Alamos National Laboratory, and execute under the CTSS operating
system. The Ardent Titan is owned by the T-12 Group at Los Alamos. The IBM
RISC Systems/6000 is operated by the Bonner Physics Laboratory at Rice
University. The Convex-1 is run by the Center for Research on Parallel Comput-
ing at Rice University. All calculations were carried out between June 1, 1990
and August 30, 1990.

4.2. Code modifications

The BCRLM code is based on the original RXN1D scattering code [15] with
several modifications. The code has been modified in its physics content in two
significant ways: (1) to solve the BCRLM equations, rather than those limited to
collinear reaction events, and (2) to compute potential matrix elements over the
harmonic oscillator primitive basis functions by an efficient Gauss-Hermite
quadrature. Other cosmetic modifications to the code have been made to
improve its portability between a variety of different computing environments,

Table 1. Characteristics of computers used

Machine Number of Operating FORTRAN Memory
Processors System Compiler (MBytes)

IBM 3090-600J 6 VM/XA Fortvs/pfpcomp 512
Cray-XMP 4 CTSS CFT 1.16 512
Cray-YMP 8 CTSS CFT 1.16 1024
MIPS 2000 1 RISC/OS 6.0 F77 2.0 32
Convex-1 1 Convexos 8.0 F77 6.0 64
Ardent Titan 2 UNIX NFC 64
RISC System/6000-530 1 AIX 3.0 xlf 32

Benchmark studies of the BCRLM reactive scattering code 207

particularly in the handling of input and output functions. None of these
modifications significantly affects how long it takes to do scattering calculations.
Several obvious modifications were made to improve the computational per-
formance of the code, and to improve its vectorizability. These modifications
focus on the portions of the code that perform the standard matrix algebra
functions of matrix addition, multiplication, inversion, and diagonalization.
Wherever possible, inner DO loops in the original code were replaced with calls
to the equivalent routines available in the Basic Linear Algebra Subroutines
(BLAS routines). Wherever possible, imbedded loop structures were rearranged
to improve the vectorizability or typical trip counts of the inner loop. The BLAS
routine that performs most of the matrix work is SAXPY (or DAXPY in double
precision versions).

To render the code in a form appropriate for parallel execution it was
necessry to rewrite major sections of the code to conform to the four stages
outlined in the previous sections. The original code, which was designed for a
serial environment, mixed the code for the four stages in such a way that it was
not possible to unscramble them using normal compiler directives. In fact, early
attempts to generate a code suitable for execution on the IBM 3090-600J without
major code modifications produced code that actually ran slower in terms of
both wall time and total CPU time. Thus, the code used to obtain timings for the
parallel operation on the IBM 3090-600J, while it carries out the same operations
and uses the same algorithms as for the serial and vector timings, has been fully
segmented into the four stages that we presented above for parallel computing in
a shared memory environment. At Stage 3 and Stage 4 each of the energies was
assigned to a different processor.

4.3. Scalar and vector comparisons

While this study involves only 7 different machines, there are actually 11 different
cases that we have investigated corresponding to different levels of scalar, vector,
and parallel operations. The details of each of these cases are summarized in
Table 2.

Table 2. Cases studied

Case Machine Processors Mode
Label Used

IBM-S IBM 3090-600J 1 Scalar
IBM-V IBM 3090-600J 1 Vector
IBM-P IBM 3090-600J 4 Parallel
Cray-XS Cray-XMP 1 Scalar
Cray-XV Cray-XMP 1 Vector
Cray-YS Cray-YMP 1 Scalar
Cray-YV Cray-YMP 1 Vector
MIPS MIPS 2000 1 Scalar
Conv Convex- 1 1 Vector
Ardnt Ardent Titan 1 Vector
RISC RISC System/600 1 Vectol -~

a While not a vector architecture, the RISC System/6000 machine performs
best on codes that vectorize well

208 E .F . Hayes et al.

In Fig. 1, we compare the execution times for the three scalar cases. Then in
Fig. 2 the vector cases are compared as a function of the number of coupled
equations being solved for the IBM 3090 600J, and the Cray XMP and YMP.
For each case in Fig. 2 we have used the optimized assembly language
equivalents to the BLAS (Basic Linear Algebra Subroutines). In Fig. 3, for
comparison purposes we present timings obtained using FORTRAN versions of
the BLAS. There are significant improvements in performance due to the use of
the machine language versions. In Fig. 4, we compare vectorized runs on the

200

175

%" 15o

-~ 125

~- 100

75
D
0 -

50

25

0

S c a l a r P e r f o r m a n c e
6o

. . . . I I I I I ' ' ' ' 1 ' ' ' I ~ 5 0

1 o
03

40
/ / •

/ / / ' / E 30

. . . .- /" D 20
: (3..

0 10

,, I , , 0
5 10 15 20 25 30 35 0

Number of Channels

V e c f o r P e r f o r m a n c e

/
/

/

, , r , , , , i , i i r l , ~ , , I ,
5 10 15 20 25 30 35

N u m b e r o f C h a n n e l s

100

80

60

t-- 40
D
n
(.5

20

0
0

V e c f o r P e r f o r m a n c e
' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 1 ' ' ' 1 ' ' ' ' 1 ' ' '

/
/

5 t 0 15 20 25 30

Number of Channels

35 35

V e c t o r P e r f o r m a n c e
2 0 0 I I ~ I I ' '

175

~, 15o

125

~: 100

75
D

25
0 , r -~ - r - , - . r . . , ~ i i 1 , , , , I ,

0 5 10 15 20 25 30

4 Number of Channels

Fig. 1. Scalar performance (CPU time) vs. number of coupled equations, N. See Table 2 for
definition of case labels. Legend: (dots) IBM-S, (solid line) Cray-XS, (dashed line) Cray-YS, (dash-dot
line) MIPS

Fig. 2. Vector performance (CPU time) vs. number of coupled equations, N, obtained using
optimized assembly language versions of the BLAS. Legend: (dots) IBM-V, (solid line) Cray-SV,
(dashed line) Cray-YV

Fig. 3. Vector performance (CPU time) vs. number of coupled equations, N, using vectorized
FORTRAN versions of the BLAS. See Table 2 for definition of case labels. Legend: (dots) IBM-V,
(solid line) Cray-XV, (dashed line) Gray-YV

Fig. 4. Vector performance (CPU time) vs. number of coupled equations, N, obtained using
vectorized FORTRAN versions of the BLAS. Legend: (dots) Ardnt, (solid line) Conv, (dashed line)
RISC

Benchmark studies of the BCRLM reactive scattering code

Table 3. CPU times in seconds as a function of N

209

Case N
Label

5 10 15 20 25 30

IBM-S 6.0 14.0 33.0 63.0 106.0 173.0
IBM-V 2.0 7.0 13.0 22.0 31.0 46.0
Cray-XS 4.9 12.0 23.6 41.6 64.3 96.9
Cray-XV 3.2 6.4 9.9 16.7 22.0 32.6
Cray-YS 3.9 9.4 18.4 32.3 49.7 74.7
Cray-YV 2.6 4.8 7.6 12.6 16.5 24.3
MIPS 5.7 15.0 29.4 57.5 88.7 148.2
Conv 23.2 57.7 105.5 179.5 235.5 262.4
Ardnt 22.9 53.0 94.8 158.6 214.2 363.3
RISC 4.4 9.1 15.0 28.1 40.6 61.5

Table 4. Scalar to vector speedups as a function of N

Case N
Label

5 10 15 20 25 30

IBM-3090 2.0 2.0 2.5 2.9 3.4 4.4
Cray-XMP 1.3 1.9 2.4 2.5 2.9 3.0
Cray-YMP 1.5 2.0 2.4 2.6 3.0 3.1

Fractional vectorization

IBM-3090 0.60 0.61 0.69 0.75 0.79 0.86

A r d e n t Ti tan , and the C o n v e x - l , with the R I S C System/6000. In each o f these
cases we have used F O R T R A N vers ions o f the BLAS. The pe r fo rmance o f the
R I S C System wi thou t the special machine language B L A S is within a b o u t a fac tor
o f two o f the vector ized I B M 3090-600J, and the Cray X M P and Y M P
pe r fo rmance with the machine l anguage BLAS.

In Table 3 we present the pe r fo rmance o f the var ious cases as a funct ion o f N.
In Table 4 we r epor t the scalar to vector speedups for selected values o f the

to ta l number o f coupled channels ob ta ined for the Cray X M P , Cray Y M P , and
I B M 3090. Also inc luded in this table are the simple A m d a h l ' s law analysis o f the
f ract ions o f the B C R L M code tha t are vectorizable, fv as de te rmined by ana lyz ing
the t ime spent in the vec tor uni t on the I B M 3090. F o r N equal to 30, the percent
vec tor iza t ion is 86%.

4.4. Parallel results for the IBM 3090-600J

We have modi f ied the B C R L M code extensively so tha t it can be run in para l le l on
a shared m e m o r y para l le l a rchi tec ture machine . W e have carr ied out para l le l test
runs on the I B M 3090-600J at the Cornel l N a t i o n a l Supe rcompu te r Fac i l i ty for
each o f the four stages ind ica ted in the prev ious section. These p re l iminary test
runs indicate tha t there is very litt le add i t iona l overhead associa ted with the

210 E.F. Hayes et al.

parallel execution - probably less than 1%. As a result we expect to be able to
achieve speedups that are nearly linear with the total number of processors. We
are not reporting detailed timing runs at this time because we are continuing to
upgrade the new code and to make certain that its scalar, vector, and parallel
performance has been optimized to the same extent. We expect to have these
results in the near future.

4.5. Implications of 3D reactions scattering calculations

In this section we draw on our experience [16, 17] with the Parker-Pack
Adiabatically-adjusting, Principal axis Hyperspherical (APH) coordinates ap-
proach to obtaining accurate 3D scattering results [1]. While the Parker-Pack
method involves many additional operations not encountered in the BCRLM
approach, the basic idea of dividing up the computations into four separate
stages carries over to this 3D approach without major modifications.

To demonstrate this we need to review some of the basic equations from Ref.
[1]. In the APH theory the total scattering wavefunction is expanded in a basis
of sector adiabatic surface functions. These surface functions are bound state
eigenfunctions of the surface Hamiltonian:

H(O, Z; Q~)~,(0, Z; ~¢) = g,(~¢)~,(0, Z; ~¢) (36)

where 0 and X are the two APH hyperangles. Equations (36) also depends
parametrically on ~ , the center of a sector, where the range of the APH
hyperradius is divided into n sectors, ~ = 1 , . . . , n. When the total scattering
wavefunction is substituted into the full Schrrdinger equation for J = 0, a set of
n coupled channel (CC) equations is obtained, where N is the number of surface
functions (t = 1 N) in the CC expansion. These exact CC equations are
propagated from E1 to Qn using the log-derivative method [18], then the boundary
conditions are applied as usual [lb].

This first stage of the 3D calculations is by far the most time consuming and
demanding of memory. For instance for our J = 0 study of the reaction
He + H2 + ~HeH+ + H on the Ardent Titan, the first stage required about 90
hours, the second stage about 10 hours, and the combined third and fourth
stages about 8 minutes per energy after the first energy which requires about 16
minutes. However, the total time involved in these Stage 3 and Stage 4
calculations was nearly 48 hours, since nearly 350 energy calculations were
needed to obtain the desired energy resolution over the energy range studied.
Clearly we need significant improvements in computation speed.

Shared memory environment. For a large shared memory parallel computer,
typically with a modest number of processors, the Parker-Pack approach lends
itself to high levels of parallel activity in very much the same way that we have
outlined for the BCRLM code. Solutions to Eq. (36) may be obtained by
dividing up the total number of sectors into groups of equal numbers (approxi-
mately) of adjacent sectors so that each processor may be assigned about the
same amount of work. Following this initial assignment, the surface function
calculations can be carried out in parallel without generating any significant
additional computational overhead. This approach has a possible advantage in
that different techniques may be used for solving Eq. (36) in different regions of
Q space. For the Parker-Pack approach there is some additional computational

Benchmark studies of the BCRLM reactive scattering code 211

overhead compared to the BCRLM code that is related to the larger sizes of the
matrices involved in a 3D calculation. Since the number of surface function
matrix elements is much larger than that encountered in the BCRLM code, one
cannot keep all of these matrix elements for all of the sectors in main memory
at the same time. However, by assigning a group of adjacent sectors to the same
processor one can interleave the first two stages and then generate the sector-
to-sector overlap matrices before it is necessary to move one of the adjacent
surface functions to temporary storage. The only exceptions to this are for
adjacent sectors that are assigned to different processors. The sector surface
function matrices needed to calculate these particular sector-to-sector overlap
matrices can be kept in main memory or retrieved from temporary files. The
decision on whether to keep or retrieve these matrix elements will depend on the
amount of main memory available and the size of the problem being solved.

At the end of these first two stages we have the matrix elements needed for
the propagation stage, Stage 3. Since these matrix elements cannot all be held in
main memory at one time, for efficient propagation of the coupled equations
they must be arranged in temporary file space so that they can be read
sequentially from the lowest to the highest Q values as needed. If care is taken
during the first two stages, this can easily be accomplished by creating two
separate files for each group of sectors (i.e., one for the surface function matrices
and another for the sector-to-sector overlap matrices). Then within each range of
sectors all the matrices can be appropriately ordered. The propagation code then
only needs to know the sector ranges assigned to each file.

By assigning different energies to each processor for Stage 3 one can achieve
high levels of parallel activity. An issue that comes up here is whether it is
desirable to synchronize the timing among the processors so that each processor
is working on the same sector during the same time period. If this is done, the
number of file reads will be reduced by the number of processors used. The
problem is that some processors will need to wait while others are finishing up
work for the active sector. Since each of the processors is basically going through
the same basic steps, the amount of time lost waiting will be a small percentage
of the total compute time per sector.

For Stage 4 the assembly of the asymptotic matrices needed to calculate the
S matrix can be carried out in parallel fashion as in the case of the BCRLM
code. Each processor just continues on from the Stage 3 calculations with the
values of the asymptotic R-matrix elements and calculates the S-matrix for the
assigned energy.

Distributed memory environment. Here, we are most encouraged by the work of
Kuppermann et al. [19]. Their important work, about which we expect to learn
more at this Conference on Parallel Computing for Chemical Reactivity, has
shown the wave of the future for distributed memory parallel computing. Using
the Caltech/JPL Mark IIIfp 64 processor hypercube they have demonstrated that
such a distributed memory parallel architecture machine can be competitive with
single processor computation speeds on the Cray XMP, Cray II, and Cray YMP.
To achieve this improved performance they adopted a different strategy from
that presented here for the BCRLM code. The change is necessary because the
3D hyperspherical treatment as implemented by Kuppermann's group, and by
Parker and Pack requires many very large matrices to generate the surface
functions for a particular sector. For example, the version of the Parker-Pack
code that uses the Discrete Variable Representation (DVR) approach [20, 21, 22]

212 E.F. Hayes et al.

and a sequential diagonalization-truncation procedure [23] requires about
50 Mbytes of memory for each sector. When the amount of distributed memory
associated with each of the processors is less than this, it is necessary to
distribute the operations for a sector over several processors. For example, on
the INTEL iPSC/860 at Rice University, which has 8 Mbytes per node, one
would need to allocate seven or eight processors to each sector in order to have
enough random access memory to write an efficient code. However, since the
BCRLM code fits easily within 8 Mbytes, it is not necessary to allocate more
than one processor to a sector during Stage 1 processing.

The calculation of the sec tor - to -sec tor overlap matrices, Stage 2, also
requires considerable random access memory for efficient processing. As a result,
several processors are also needed for this stage. Moreover, since this stage
requires matrix elements from adjacent sectors it will be more efficient to
interleave the first two stages so that the sec tor - to -sec tor overlap matrices are
calculated before one of the sector surface functions is moved to temporary
storage (e.g., the concurrent file system on the INTEL iPSC/860).

For Stage 3 we note that the Kuppermann group [19] has obtained good
results for this propagation stage by clustering processors in groups of eight and
then assigning different energies to each cluster. The final stage of calculating the
S matrix from the asymptotic values generated in Stage 3 is straightforward for
parallel execution using the Kuppermann cluster approach [19], and is not very
time consuming.

Direct calculation of time delays. For chemical reactions that exhibit quantum
resonances (long-lived complexes) there is considerable interest in being able to
calculate the resonance lifetime. Smith [24] has shown that the scattering time
delay, A t,~, may be calculated from the s t a t e - to - s t a t e S -ma t r ix elements, S,~,
as follows:

At,~ = Re[-ih(S,v) -~ dS~v/dE] (37)

where u and v are the initial and final set of quantum numbers for the
s t a t e - to - s t a t e process. While the scattering approaches discussed above provide
the S -ma t r ix elements directly at each energy, the energy derivatives must be
determined separately. The traditional way to calculate the energy derivatives of
the S - ma t r i x is to calculate the S -ma t r ix at many closely spaced energies and
then find the energy derivatives by numerical differentiation.

Recently it has been shown [17] that the Parker -Pack method may be
extended to include the direct calculation of the energy derivatives of the
S-matr ix . The additional code to generate these energy derivatives at the same
time as the S -ma t r i x is being calculated has now been added to the Parker -Pack
code [25]. Test results on Hel l ; ~ indicate that the method is both accurate and
efficient. Furthermore, the additional steps associated with this direct method fit
well within the context of the parallel architecture approaches discussed above
both for shared and distributed memory machines. For systems with significant
resonance structure this direct method offers a straightforward way to reduce the
number of energy calculations required by as much as a factor of ten.

The future. The prospect for future 3D quantum scattering studies is encourag-
ing both for shared memory parallel computers such as the IBM 3090-600J and
the Cray YMP 8]64, as well as for distributed memory parallel computers. It will
be interesting to see if distributed memory parallel architecture machines such as
the INTEL iPSC/860, with 8 Megabytes of memory at each of 128 nodes will

Benchmark studies of the BCRLM reactive scattering code 213

outperform shared memory machines operating in parallel. It will also be
interesting to see if we are able to develop approaches that require less memory
per processor and what the trade-offs will be between memory requirements and
additional computing requirements. For 3D reactive scattering, memory may
turn out to be dearer than computing power.

Acknowledgements. This work was performed in part under the auspices of the U.S. Department of
Energy. One of us (E.F.H.) was supported by a grant from the Robert A. Welch Foundation. The
authors would like to thank Russ Pack, Joel Kress, and Greg Parker for many insightful discussions
on 3D quantum reaction dynamics. We also wish to thank Danny Sorensen for several insights into
how to make effective use of distributed memory parallel computers. We also thank Phil Pendergast
for helpful suggestions and comments on the content of this paper.

References

1. (a) Parker GA, Pack RT, Archer BJ, Walker RB (1987) Chem Phys Lett 137:564; (b) Pack RT,
Parker GA (1987) J Chem Phys 87:3888

2. (a) Zhang JZH, Miller WH (1987) Chem. Phys. Lett. 140:329; (b) Zhang JZH, Chu SI, Miller
WH (1988) J Chem Phys 88:4549

3. (a) Schwenke DW, Haug K, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ (1987) J Phys Cbem
91:6080; (b) Schwenke DW, Haug K, Zhao M, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ
(1988) J Phys Chem 92:3202

4. Manolopoulos DE, Wyatt RE (1988) Chem Phys Lett 152:23
5. (a) Hang K, Schwenke DW, Truhlar DG, Zhang JZH, Kouri DJ (1986) J Phys Chem 90:6757;

(b) Zhang JZH, KOuri, DJ, Haug K, Schwenke DW, Shima Y, Truhlar DG (1988) J Chem Phys
88:2492

6. Baer M, Shima Y (1987) Phys Rev A 35:5252; Baer M (1987) J Phys Chem 91:5846; Neuhauser
D, Baer M (1988) J Chem Phys 88:2856; Baer M (1989) J Chem Phys 90:3043

7. Webster F, Light JC (1989) J Chem Phys 90:265; (1989) J Chem Phys 90:300
8. Kuppermann A, Hipes PG (1986) J Chem Phys 84:5692
9. Linderberg J, Vessal B (1987) Int J Quant Chem 31:65; Linderberg J, Padkjaer SB, IJhrn Y,

Vessal B (1989) J Chem Phys 90:6254
10. Schatz GC (1988) Chem Phys Lett 150:92
11. Launay JM, Pepetit B (1988) Chem Phys Lett 144:346; Lepetit B, Launay JM (1988) Chem Phys

Lett 151:287
12. (a) Walker RB, Hayes EF (1983) J Phys Chem 87:1255; (1984) 88:1194 (b) Walker RB, Hayes

EF (1986) in: Clary DC (ed) The theory of chemical reaction dynamics. Reidel, New York, p 105
13. Light JC, Walker RB (1976) J Chem Phys 65:4272
14. Muckerman JT (1971) J Chem Phys 54:1155; (1972) 56:2997; (1972) 57:3388
15. Walker RB, QCPE Program No 352
16. Kress JD, Walker RB, Hayes EF (1990) J Chem Phys 93:8085
17. Darakjian Z, Hayes EF "Extension of the Pack-Parker quantum reactive scattering method to

include direct calculation of time delays," accepted for publication in J Chem Phys
18. Johnson BR (1977) J Chem Phys 67:4086; (1978) 69:4678
19. Wu YM, Cuccaro SA, Hipes PG, Kuppennann A (1990) Chem Phys Lett 168:429
20. Light JC, Hamilton IP, Lill JV (1985) J Chem Phys 82:1400
21. Ba6i6 Z, Kress JD, Parker GA, Pack RT (1990) J Chem Phys 92:2344
22. Whitenell RM, Light JC (1988) J Chem Phys 89:3674
23. Bali6 Z, Light JC (1986) J Chem Phys 85:4594; (1989) Ann Rev Phys Chem 40:469
24. Smith TS (1960) Phys Rev 118:349
25. Parker GA, Butcher E, Hayes EF, Darakjian Z (1990) unpublished results

